11 research outputs found

    Motor Learning and Motor Control Mechanisms in an Haptic Dyad

    Get PDF
    The word \u201cdyad\u201d defines the interaction between two human or cybernetic organisms. During such interaction, there is an organized flow of information between the two elements of the dyad, in a fully bidirectional manner. With this mutual knowledge they are able to understand the actual state of the dyad as well as the previous states and, in some cases, to predict a response for possible scenarios. In the studies presented in this thesis we aim to understand the kind of information exchanged during dyadic interaction and the way this information is communicated from one individual to another not only in a purely dyadic context but also in a more general social sense, namely dissemination of knowledge via physical and non-physical interpersonal interactions. More specifically, the focus of the experimental activities will be on motor learning and motor control mechanisms, in the general context of embodied motor cognition. Solving a task promotes the creation of an internal representation of the dynamical characteristics of the working environment. An understanding of the environmental characteristics allows the subjects to become proficient in such task. We also intended to evaluate the application of such a model when it is created and applied under different conditions and using different body parts. For example, we investigated how human subjects can generalize the acquired model of a certain task, carried out by means of the wrist, in the sense of mapping the skill from the distal degrees of freedom of the wrist to the proximal degrees of freedom of the arm (elbow & shoulder), under the same dynamical conditions. In the same line of reasoning, namely that individuals solving a certain task need to develop an internal model of the environment, we investigated in which manner different skill levels of the two partners of a dyad interfere with the overall learning/training process. It is known indeed that internal models are essential for allowing dyadic member to apply different motor control strategies for completing the task. Previous studies have shown that the internal model created in a solo performance can be shared and exploited in a dyadic collaboration to solve the same task. In our study we went a step forward by demonstrating that learning an unstable task in a dyad propitiates the creation of a shared internal model of the task, which includes the representation of the mutual forces applied by the partners. Thus when the partners in the dyad have different knowledge levels of the task, the representation created by the less proficient partner can be mistaken since it may include the proficient partner as part of the dynamical conditions of the task instead of as the assistance helping him to complete the experiments. For this reason we implemented a dyadic learning protocol that allows the na\uefve subject to explore and create an accurate internal model, while exploiting, at the same time, the advantage of working with an skilled partner

    Nitroxide-Functionalized Graphene Oxide from Graphite Oxide

    Get PDF
    A facile method for preparing functionalized graphene oxide single layers with nitroxide groups is reported herein. Highly oxidized graphite oxide (GO=90.6%) was obtained, slightly modifying an improved Hummer’s method. Oxoammonium salts (OS) were investigated to introduce nitroxide groups to GO, resulting in a one-step functionalization and exfoliation. The mechanisms of functionalization/exfoliation are proposed, where the oxidation of aromatic alcohols to ketone groups, and the formation of alkoxyamine species are suggested. Two kinds of functionalized graphene oxide layers (GOFT1 and GOFT2) were obtained by controlling the amount of OS added. GOFT1 and GOFT2 exhibited a high interlayer spacing (d0001 = 1.12nm), which was determined by X-ray diffraction. The presence of new chemical bonds C-N (~9.5 %) and O-O (~4.3 %) from nitroxide attached onto graphene layers were observed by X-ray photoelectron spectroscopy. Single-layers of GOFT1 were observed by HRTEM, exhibiting amorphous and crystalline zones at a 50:50 ratio; in contrast, layers of GOFT2 exhibited a fully amorphous surface. Fingerprint of GOFT1 single layers was obtained by electron diffraction at several tilts. Finally, the potential use of these materials within Nylon 6 matrices was investigated, where an unusual simultaneous increase in tensile stress, tensile strain and Young’s modulus was observed

    Investigating the Muscular and Kinematic Responses to Sudden Wrist Perturbations During a Dynamic Tracking Task

    Get PDF
    Sudden disturbances (perturbations) to the hand and wrist are commonplace in daily activities and workplaces when interacting with tools and the environment. It is important to understand how perturbations influence forearm musculature and task performance when identifying injury mechanisms. The purpose of this work was to evaluate changes in forearm muscle activity and co-contraction caused by wrist perturbations during a dynamic wrist tracking task. Surface electromyography was recorded from eight muscles of the upper-limb. Participants performed trials consisting of 17 repetitions of ±40° of wrist flexion/extension using a robotic device. During trials, participants received radial or ulnar perturbations that were delivered during flexion or extension, and with known or unknown timing. Co-contraction ratios for all muscle pairs showed significantly greater extensor activity across all experimental conditions. Of all antagonistic muscle pairs, the flexor carpi radialis (FCR)-extensor carpi radialis (ECR) muscle pair had the greatest change in co-contraction, producing 1602% greater co-contraction during flexion trials than during extensions trials. Expected perturbations produced greater anticipatory (immediately prior to the perturbation) muscle activity than unexpected, resulting in a 30% decrease in wrist displacement. While improving performance, this increase in anticipatory muscle activity may leave muscles susceptible to early-onset fatigue, which could lead to chronic overuse injuries in the workplace.Brock University Library Open Access Publishing Fun

    Social Cognition for Human-Robot Symbiosis—Challenges and Building Blocks

    Get PDF
    The next generation of robot companions or robot working partners will need to satisfy social requirements somehow similar to the famous laws of robotics envisaged by Isaac Asimov time ago (Asimov, 1942). The necessary technology has almost reached the required level, including sensors and actuators, but the cognitive organization is still in its infancy and is only partially supported by the current understanding of brain cognitive processes. The brain of symbiotic robots will certainly not be a “positronic” replica of the human brain: probably, the greatest part of it will be a set of interacting computational processes running in the cloud. In this article, we review the challenges that must be met in the design of a set of interacting computational processes as building blocks of a cognitive architecture that may give symbiotic capabilities to collaborative robots of the next decades: (1) an animated body-schema; (2) an imitation machinery; (3) a motor intentions machinery; (4) a set of physical interaction mechanisms; and (5) a shared memory system for incremental symbiotic development. We would like to stress that our approach is totally un-hierarchical: the five building blocks of the shared cognitive architecture are fully bi-directionally connected. For example, imitation and intentional processes require the “services” of the animated body schema which, on the other hand, can run its simulations if appropriately prompted by imitation and/or intention, with or without physical interaction. Successful experiences can leave a trace in the shared memory system and chunks of memory fragment may compete to participate to novel cooperative actions. And so on and so forth. At the heart of the system is lifelong training and learning but, different from the conventional learning paradigms in neural networks, where learning is somehow passively imposed by an external agent, in symbiotic robots there is an element of free choice of what is worth learning, driven by the interaction between the robot and the human partner. The proposed set of building blocks is certainly a rough approximation of what is needed by symbiotic robots but we believe it is a useful starting point for building a computational framework

    Skill learning and skill transfer mediated by cooperative haptic interaction

    No full text
    It is known that physical coupling between two subjects may be advantageous in joint tasks. However, little is known about how two people mutually exchange information to exploit the coupling. Therefore we adopted a reversed, novel perspective to the standard one that focuses on the ability of physically coupled subjects to adapt to cooperative contexts that require negotiating a common plan: we investigated how training in pairs on a novel task affects the development of motor skills of each of the interacting partners. The task involved reaching movements in an unstable dynamic environment using a bilateral non-linear elastic tool that could be used bimanually or dyadically. The main result is that training with an expert leads to the greatest performance in the joint task. However, the performance in the individual test is strongly affected by the initial skill level of the partner. Moreover, practicing with a peer rather than an expert appears to be more advantageous for a naive; and motor skills can be transferred to a bimanual context, after training with an expert, only if the non-expert subject had prior experience of the dynamics of the novel task

    Effect of Rituximab Compared with Natalizumab and Fingolimod in Patients with Relapsing–Remitting Multiple Sclerosis: A Cohort Study

    No full text
    The objective of this study was to evaluate the clinical files of patients with RRMS who started rituximab (RTX) compared with a second-line treatment (natalizumab (NTZ) or fingolimod (FTY)). This was a historical cohort study. We compared the effect according to the Expanded Disability Status Scale (EDSS) and the number of relapses in RRMS patients receiving these treatments after a mean period of 12 months. We found a statistically significant difference (p < 0.001) when comparing the EDSS scores and the annual relapse rates of patients receiving RTX with those receiving NTZ or FTY. This study is essential for our clinical practice, since patients with limited treatment options represent a challenge with regard to the management of their medical care. However, clinical trials and prospective studies with long follow-up periods are necessary to provide sufficient evidence on the efficacy of RTX and thus include this treatment in the therapeutic profile of patients with MS
    corecore